28 research outputs found

    Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization

    Get PDF
    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, “puzzle imaging,” that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples

    Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing

    Get PDF
    High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases – Dpo4 and Klenow exo[subscript −] – obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn[superscript 2+] with a misincorporation rate gain of ~2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn[superscript 2+] and Mg[superscript 2+] change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.Damon Runyon Cancer Research FoundationNational Institutes of Health (U.S.)National Science Foundation (U.S.)McGovern Institute for Brain Research at MITMassachusetts Institute of Technology. Media LaboratoryNew York Stem Cell Foundation (Robertson Neuroscience Investigator Award)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award

    Spatial information in large-scale neural recordings

    Get PDF
    To record from a given neuron, a recording technology must be able to separate the activity of that neuron from the activity of its neighbors. Here, we develop a Fisher information based framework to determine the conditions under which this is feasible for a given technology. This framework combines measurable point spread functions with measurable noise distributions to produce theoretical bounds on the precision with which a recording technology can localize neural activities. If there is sufficient information to uniquely localize neural activities, then a technology will, from an information theoretic perspective, be able to record from these neurons. We (1) describe this framework, and (2) demonstrate its application in model experiments. This method generalizes to many recording devices that resolve objects in space and should be useful in the design of next-generation scalable neural recording systems

    Physical principles for scalable neural recording

    Get PDF
    Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices

    Statistical Analysis of Molecular Signal Recording

    Get PDF
    A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a “molecular ticker tape”, in which an engineered DNA polymerase (DNAP) writes time-varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding, particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties similar to natural polymerases could be used to perform experiments in which neural activity is compared across several experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations. Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike temporal resolution over experimentally relevant timescales.United States. Defense Advanced Research Projects Agency. Living Foundries ProgramGoogle (Firm)New York Stem Cell Foundation. Robertson Neuroscience Investigator AwardNational Institutes of Health (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Transformative R01 1R01GM104948)National Institutes of Health (U.S.) (Single Cell Grant 1 R01 EY023173)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (CAREER Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS1042134)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award

    Physical principles for scalable neural recoding

    Get PDF
    Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices

    Neural Voxel Puzzling Overview.

    No full text
    <p><b>(A)</b> An example of 6 “neurons” (lines) going through 4 voxels. Each neuron has a unique DNA barcode (here color). <b>(B)</b> These voxels are broken apart. <b>(C)</b> A coincidence matrix, <b>X</b>, is constructed describing which neurons are in which voxels. Gray signifies that a neuron is in a particular voxel. <b>(D)</b> A similarity matrix is constructed describing how many neurons a pair of voxels has in common. This matrix can be calculated as <b>XX</b><sup><i>T</i></sup>. <b>(E)</b> The voxels are puzzled back together. The reconstruction may be rotated or flipped, as shown here.</p

    Chemical Puzzling Overview.

    No full text
    <p><b>(A)</b> An example area contains a chemical whose concentration is represented by a grayscale value. <b>(B)</b> Pioneer cells (X’s and O’s, each with a different color) are put on the plate. X’s represent F<sup>+</sup> cells that can transfer an F-plasmid into an F<sup>−</sup> cell (O’s). <b>(C)</b> The pioneer cells replicate and spread. Descendants of a pioneer are shown in the same color. <b>(D)</b> When the cell colonies become large enough to contact neighboring colonies, the F<sup>+</sup> cells (X’s) will copy the F-plasmid and transfer it to the F<sup>−</sup> cells (O’s). This is shown as the X’s color filling in the center of the O’s. In the inset (below), the F-plasmid transfer (conjugation) is shown. <b>(E)</b> The DNA is sequenced to determine which pioneer cells are “connected” (which had a conjugative transfer occur between their colonies). A connectivity matrix is made from this data. <b>(F)</b> The matrix of connections doesn’t directly provide accurate information about how close the original cells are to each other because O’s can’t be connected to O’s (and same for X’s). As our similarity matrix, we thus use the matrix of mutual connections, which allows O’s to be connected to O’s. <b>(G)</b> The location of the original cells is estimated from the matrix in panel F. <b>(H)</b> The chemical concentrations at each of the original cells locations is known as the cells’ DNA acts as a chemical sensor. <b>(I)</b> The chemical concentration everywhere is extrapolated based on the chemical concentrations at the known pioneer cells.</p
    corecore